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In this paper we construct an explicit constitutive model that is capable of describing the
thermomechanical response of a shape-memory alloy. The mndel consists of a Helmholtz
free-energy fupction, a kinetic relation and a nucleation criterion. The free-energy is associated
with a three-well potential energy function; the kinetic relation is based on thermal activation
theory; nucleation is assumed to occur at a critical value of the approgriate energy barrier. The
predictions of the model in various quasi-static thermomechamcal loadings are exammed and
compared with experimental observations.

1. Introduction. Thermoelasticity theory has been used to study certain general issues
pertaining to solids that undergo reversible stress- and temperature-induced phase transitions. In
this theory, the potential energy function that characterizes the material, as a function of
deformation gradient, has multiple energy-wells for certain ranges of stress and temperature, and
cach energy-well is identified with a phase (or variant of a phase) of the material. For example,
the studies reported in [1, 8, 12, 19, 21, 22, 31, 34] address issues pertaining to stable equilibrium

configurations of such materials, while [2-5, 16, 18, 35] examine questions related to evolution.

A complete constitutive theory that describes the behavior of such m#teﬁéls consists of a
Helmholtz frec-energy function which describes the response of each individual phase, a
nucleation criterion which signals the conditions under which the transition from one phase to
another commences, and a kinetic law which characterizes the rate at which this transition
progresses. Explicit examples of these ingredients have been constructed by various authors, For
example, Ericksen [13] and Silling [34] have constructed three-dimensional Helmholtz
frec-energy functions that wmnodel certain crystals. Falk [14] has studied a one-dimensional
polynomial frec-energy function and Jiang [20] has used a similar characterizaiion in anti-plane
shear. Models of kinetic relations have been constructed, for example, by Otsuka et al. [30] by
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relating phase boundary motion to dislocation moticn and by Muller and Wilmansky [25] by

using certain statistical coasiderations.

Recently, Abeyaratne and KnoWlw [S] presented simple models for each of these
ingredients: their Helmholtz free-energy function was associated with a piecewise linear
material, while their kinetic rclation was based on thermal activation theory; they took nucleation
to occur at a critical value of ‘‘driving force’’. They also made a qualitiztive comparison of their

~ theory with certain experiments on some shape memory alloys.

The present study generalizes the model of Abeyaratne and Knowles [6]. The potential
energy function in [6] has at most two energy wells, and thus it only accounts for two phases.
However, even in the simplest one-dimensional setting, one often encounters three material
configurations -- a parent phase and two variants of the product phase. The priucipal
gcnuﬂhation of the present paper is to construct a three-well energy function analogous to the
two-well mode! of [6]. This allows us to simulate some 'cxpeximents such as the one carried out
by Ehrenstein (sec Achenbach and Muller [7]), in 'which a bar composed initially of equal
amounts of two martensitic variants was subjected to a slowly oscillating stress, and at the same
time was heated and then cooled. At various stages during the ensuing process, the bar involvcd
two martensitic variants, two martensitic variants and austenite, one martensitic variant and

_ austenite, and pure austenite. A three-well energy is essential for modeling such a phenomenon.

Asm [6), the kinefic law utilized in the present Study is based on thermal activation
theory; The nucleation criterion that we adopt here is based on a critical value Qf the appropriate
‘“‘energy barrier’” and is motivated, in part, by the models used to describe nucleation in the
materials science literature; see e.g. Christian [10], Fine [15].

In Section 2 we outline the version of thermoelasticity that wé intend to use. In Section 3
we construct the three-well eneigy function and discuss the stability of the various phases. Next,
in Section 4 we calculate the energy barriers associated with this energy function and use them to
establish the nucleation criterion and kinetic relatiou. In Section 5 we carry out a number of

simulations and compare them with experimental observations.




2. Preliminaries. In this section we review some relevant concepts from the continuum theory
of thermomechanical processes within a purely one-dimcnsion'al' setiing that corresponds to
uniaxial stress in a bar. The bulk behavior of a thermoelastic material may be characterized by its
Helmholtz free-energy per unit mas: y(Y,0), where ¥ is strain and 0 is temperature; the stress

-3 specific entropy M at a particle are then constitutively related to ¥, 8 through

=Py O,  n=-yy(.6), | @

where p denotes the mass density in the reference configuration. The pdténtial energy per unit

reference volume G(¥; 0, o) of the material is definea by

G(1: 6, 0) = py(, 6) - oY, - @2

and its val'-. at an extremum of G(e; 0, ©) coincides with the Gibbs free energyv per unit -
reference volume g(¥, 6) = py(¥,0) - p\v'Y(Y. o)y. '
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In crder to model a material that can undergo a tkermoelastic phase tramsition, the
function G(e; 0, ) should have multiple local minima (“‘energy-wells’’) when the temperature
and stress take on suitable values; the corresponding Helmholtz ﬁ'ee-cnergy potential y(e, 8) will

be non-convex, and the stress-strain curve characterized by 6 = pqr.{(‘{. 0) will be non-monotonic.

In this theory, each local minimum of the potential energy function G, and therefore each branch
with positive slope of the stress-strain curve, is identified with a different (metastable) phase of -
the material. -

Suppose that G(e; 0, 0) has at least two local minima corresponding to a given
temperature 8 and stress 0, and let Y = 7= 16, 0) and ¥ = ¥= ¥(0, o) denote the values of strain
at these two enery,y-wells. Then the strain at a particle that is subjected to this 0 and o could be
either Y or ? depending on which energy-well (i.e. phase) the particle is in. Let x=s(t) denote the
current location in the reference configuration of a particular particle of a bar; suppose that the
particle immediately to the left of x=s(t) has a strain % while the strain on its right is ?; then x =
s(t) denotes the location of a phase boundary, i.c. an interface that separates two distinct phases




_ energy-well as being the stable phase.

" of the material. During a quasi-st2’ic process, the rate of entropy production I'(t) iv a segment of

the bar that contains the interface x=s(t) but no other phase boundaries, and which is at a uniform

| temperature 6(t), can be shown to be

I(t) = £(t) s/6(), - 2.3)

where

f = G#;0,0)- GF¥:0,0) ' Q.4

f is known as the "driving force" acting on the phase boimdary. The second law of
thermodynamics thus requires that the following éntrapy inequality hold:

fs=20. A . Q.5)

If the driving force f happens to vanish, one speaks of the states (?, 0) and (¥, 0) as being in
*‘phase equilibrium’” and of the quasi-static process as taking place ‘‘reversibly’’. If G(?; 0,0)>
G(¥; 0, 0), then { is positive and so according to (2.5) one has s = 0; thus if the phase boundary
propagates, it moves into the positive side and thereby transforms parﬁclw from (?’. 0) to (¥, 6).
In this sense, the material prefers the smaller minimum of G. This is also true in the reverse case -

when G(?; 6, 0) < G(¥; 6, 0). One therefore speaks of the phase associated with the lowest

By using the first law of thermodynamics one can show that the heat generated when a
unit mass of material changes phase from (¥}, 8) to (¥, 0) is f/p + A\ where A =0 (?i - 1) is the
latent heat; if the phase change occurs under conditions of phase equilibrium, then f=0, and the

heat generated is A.

Let x = s(t) denote the Lagrangian location of a phase boundary at time t. As particles

cross this interface, they transform from one phuse to another at a rate that is determined by the

underlying “‘kinetics’’. The kinetics of the transformation control the rate of mass flux ps across

M
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the phase boundary. If one assumes that this flux depends only on the states (¥, 6) and (? 6) on
either side of the interface, then the propagation of the phase boundary is governed by a relation

of the form

s=v@, ¥.0), 2.6)

where the kinetic r&spoﬁse function v is determined by the material. Altématively, since the
constitutive relations ¢ = p\y_{(?, 0) and 6 = pr(?. 0) can be inverted (separately) for each
phase, one can express ? and ¥ in terms of 6 and 0, and thus re-write the kinetic law (2.6) in the

form

s = v(o, 0), Q.7

where the function v depends on the two particular phases involved in the transformation and is
| .

different for each pair of phases. Finally, by substituting the inverted stress-strain-temperature

relations into (2. 4) one c%m express the driving force acting on an interface between a given pair

of phases as f = f(B o) thxs in turn can be inverted at each fixed 6, and so the kinetic law can be

expressed in the form

s=V({,0). (28

The basic principlw of the continuum theory do not provide any further information regarding
the kinetic response functions V; in particular, explicit examples of V must be supplied by

suitable constitutive modeling.

A particle changes its phase either when it crosses a moving phase boundary or by the
alternative mechanism of nucleation. Consider, for example, a quasi-static process in a bar which
involves only a single phase for some initial interval of time, and two-phase states at subsequent
times. The kinetic law describes the evolution of existing phase boundaries and therefore is only
operational once the bar is in a two-phase state. The transition of the bar from a single-phase

configuration to a two-phase configuration is controlled by a "nucleation criterion". If a particle
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is to change phase from a state (¥, 0) to a state (#, 0) through nucleation, some critical condition
of the form ©(8, 6) = 0 should be reached at that particle, where @ depends on the pair of phases |
involved in the transistion. Models for @ are often based on the notion of “‘energy barriers’’, as

will be described in Section 4.

We close this section with 2 brief discussion of some qualitativé features of the
one-dimensional model that is to be constructed in the sections to follow. Consider momentarity
the three-dimensional continuum theory, and suppose for purposes of discussion that the material

at hand exists in a cubic phase (austenite) and an orthorhombic phase (martensite); an example of

. this is the class of Cu-Al-Ni shape-memory alloys studied extensively by Otsuka and co-workers,

c.g. [28-30], and more recently by Chu and James [11]. In view of certain invariance
requirements, the associated three-dimensional potential energy function G must have seven
energy-wells corresponding to the éus_tenite phase and the six ‘“variants’’ of martensite. During a

uniaxial test of a suitably oriented single crystal specimcn. and for suitable values of temperature

0, the material is found to remain in the cubic phase for sufficiently small values of stress, in the

orthorhombic phase with the long side of the crystal parallel to the tensile axis fof sufficiently
large tensile stresses, and in the orthorhombic phase with its long side normal to the tensile axis

(i.c. in a different variant of the orthorhombic phase) for sufficiently large compressive stresses.

" In the one-dimensional theory we model this by allowing G to have three energy-wells for

suitable 8 and o, the ones at the largest and smallest values of strain correspond to the two

variants of martensite just described, while the one at the intermediate value of strain is identified

with austenite. Since the variants of martensite are crystallographically identical to each other

when 6 = 0, the energy-wells corresponding to them are required to have the same height at all

temperatures whenever the stress vanishes. Moreo -, all three energy-weils should have the
same height if the stress vanishes and the temperature coincides with the transformation

temperature BT At higher temperatures, the phase with greater symmetry (austenite) is usually

preferred over the low-symmetry phase, and so the model is to be constructed such that the

austenite energy-well is lower than the martensite wells when 6 > BT; the reverse is true for 0 <
BT‘. The crystallographic similarity between the variants also suggests that the specific entropy

associatéd with them should be identical, and thcrefo_re that the latent heat associated with the




transformation from one variant to another should be zero; this too is a feature of our model. ‘

Finally a note on terminology: for simplicity of presentation we shall sometimes speak of
the *“three phases’’ rather than the ‘‘one phase and two variants’’; similarly we shall often use
the term “‘phase boundary’’ generically to refer to both an interface between two phases and to
an interface between two variants (which ought to be called a twin boundary). |

3. | Helmholtz free-energy function. In this section we construct an explicit three-well

Helmholtz free-energy function y(y, 6) that characterizes the response of a multi-phase material;
the three energy-wells are viewed as corresponding to an austenitic phasé and to two variants of
martensite. Recall first that the elastic modulus p, coefficient of thermal expansion a and specific

heat at constant strain c of a thermoelastic material are related to (Y, 6) through,

PUN O =1 YO/ O =a Byt B =c. G

Thus if p, a and c are constant on some domain of the (Y, 0)-plane, then by integrating (3.1) one
finds that '

pY(Y, 8) = (u.fZ)(Y-g.)z - oy + pc(8-0810g(8/8,) +py, G2

on that domain, where g,, 6, and y, are constants.

Consider a material which exists in a high-températuxe phase austenite (A) and as two
variants (M+ and M") of a low-temperature phase martensite. Suppose for simplicity that the
austenite and both martensitic variants have the same constant elastic modulus >0, the same

copstant coefficient of thermal expansion a>0 and the same constant specific heat ¢>0. (The

model that follows can be readily generalized to describe the case wherein the different phases
have different but constant material properties.) By (3.2), the Helmholtz free-energy function

(Y, 0) associated with this material must have the form




iy st ¥ S PRGSO A BB i1 2 2 e @, g aiee T L TN R T LN T T O RUNPTUS P SNSRI

.(u.fl)[‘{-gl)z - payo + pc(Bl-Olog(B[Bl)) +pyy on.Pl, '
PV, 0)= (P-’Z)(Y-gz)z - payY® + pc(e-elog(ﬁfez)) +py, onP,, (3.3)
M)(Y-g3)2 - paY® + ,x(8-8log®/By) +py; on Py,

where p is the mass density of the material in the reference corfiguration, and ei. g Vp i=1,2,3,
are nine additional material constants whose physical significance will be made clear in what
follows. The regions Pl' P2 and P3 of thie (Y, 6)-plane on which the three expressions in (3.3)

bold are the regions on which the respective phases A, M* and M exist; they are assumed to

have the form shown in Figure 1, where in particular the boundaries of Pl’ P2 and P3 have been
taken to be straight lines. The temperature levels Bm and GM. denote two critical values of
temperature: for © > 8, , the material only exists in its austenite form, whereas for 6 < 6 the
material only exists in its martensite forms. Throughout this paper we Will restrict attention to

temperatures less than BM.

We nov? impose a number of restrictions on y in order that it properly model fhe
stress-free response of the material we have in mind. Since the potential energy function G and
the Helmholtz energy funuction y coincide when the stress vanishes, any characteristic to be
assigned to G at 6 = 0 could be equivalently imposed on y. Let Om and BM be the two critical

temperatures shown in Figure 1, =ad let GT denote the transformation temperature; 0 < Bm < 6.1.
< OM We assume that all three phases A, Mt and M may exist when6=0,0 = 6’1‘ Therefore
the functioa (e, BT) must have three local minima, with the minima occuring at the smallest,
intermediate and largest values of strain identified with M", A and M* resp=ctively. Since OT is

the transformation temperature, the value of y at each of these minima should be the same. Next,

for o = 0 and O close to BT, we require (e, 8) to continue to have three energy-wells. Moreover,

since M¥ and M™ are regarded as ‘‘variants’’ of each other, the two martensite znergy-wells must

have the same height for all temperature in this range; in addition, for 6 > BT the martensite wells

must be higher than the austenite well, while for 9 < B.r they shiould be lower.

On enforcing these requirements on the function y defined by (3.3), one finds that
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Vi -Vp=Vy-VpRAp> 0 | G4

: : a
log (8,/9,) = pﬁg-(gz-gl) + Ap/(cBp), log (8,/8,) = %@3-g1) + ApicBp). (3.5

In (3.5) we have let )‘T denote the common valie of Vi~ V¥, and iyl- wé; one can readily vefify
that )‘T represents the latent heat of the austenite - martensite transitions at the transformation

temperature 0.1. and that the latent heat associated with the M¥- M transition is zero.

The strass-response function 6¢Y, 6) = pwy(‘y, 0) associated with (3.3) is

. n(Y-g) - pab on Py,
o, 0)={ u(v-gy) - pa®  cn P, (3.6)
n(Y-g3) - pad on P, :

Two graphs of (Y, 6) versus Y are shown in Figure 2: Figure 2(a) corresponds to a fixed value of

temperature in the fangc 6m< 0 < BM and the stress-strain curve shows three rising branches

corresponding to the three phases A, M* and M"; Figure 2(b)‘is associated with a temperature in
the range 0 < 0 < Bm and the two rising branches of the stress-strain curve correspond to the

varianis M¥ and M, -

Of the three paramcters' g & and g3 ome is fixed by the choice of reference

configuration, while the other two are determined through the transformation strains. In
particular, if we choose stress-free austerite at the transformation temperature BT to be the

reference state, then by setting &0, BT) =0 in (3.6),, oze btains

g =- 0.91.- ' 3.D

Next, let Yr (>0) denote the transformation strain (see Figure 2(a)) between each martensitic

variant and austenite. Then, from (3.6),




Yr=8y-8 = 8-83 > 0. 3.8

(This can be readily generalized to the case where the transform_ation strain between phases A
and M is say Y], and that between A and M is 17, = ¥j-.) Finaliy, if (2.4), (3.5), (3.7) and (3.9)

are substituted back into (3.3), one finds that py(¥, 6) contams the term
PV, + (;1/2)020% + pcB log(0 /BT) as an inessential linear function of temperature which may

be ciiminated by taking
=-w2a?e?, e =0 3G9

In summary, the material at hand is characterized by the common elastic modulus p,
specific heat at constant strain ¢ and coefficient of thermal expansion a of the phaSw; the

stress-frec transformation temperature GT; the mass depsity p in the reference state; the latent
heat A‘l’ at the temperature BT; and the transformation strain Y- The Helmholtz free-energy
functica is given by combining (3.3) with (3.4), (3.5), 3.7) - (3.9):

WY - par®-8p + pcB(1- log®Bp) o P,
Pt 0 =1 G2 Y- %)% - pacy- Y@ - 8p) + peb (1 - 1og®/B ) - pAr(1 - BB o Py,

(WZ)( v+ YT) 2 HOLCY + Yo XO - B) + pcd (1 . 1og(e/eT)) - pAp(1 - 6/87) on P
- (3.10)

The various other thermo-mechanical characteristics of the material can now be derived from
(3.10). In particular, the stress-response function o(y, 6) = PY,(Y. ) is given by

BhY - ua(B-BT) on Pl’
51O =1 p(Y-vp) - pa®-6p on P, - Gay
R(Y+¥p) - pa@-65) on P,

In order to complete the description of the Helmholtz free-energy function we need to
specify the regions Pl' P2 and P3 of the (Y, 0)-plane shown in Figure 1, i.e. we need to specify
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the boundary curvec Y = ?i(e) shown in the figure. To this end, we first prescribe the stress-levels

at the local maxima and minima of the stress-strair curve. As indicated in Figure 2, we take, for

simplicity, these stress-levels 1o be given by :toM(G) and iom(O). In view of our earlier
assumption that the boundaries of the regions Pl' PZ' P3 are straight, the functions oM(B) and
om(O) must bz linear in 0. Moreover, since according to Figure 1 we must have ‘?Z(Jm)=
136 ;@)= ?4<6M) and 7,(8)p)= ¥,(8, ). it follows th?t )8y = 0 and 0,8y ) -

Cp @ =pM®-8 ) for 6 <8< BM‘
om(Q) = pum(@ - BM) + pM(BM - Gm) - Wiy for 0<B< GM.

(3.12)

where m and M are positive xﬁatcrial constants. The equations 'f= '?i(ﬂ). i=1,2,3,4, describing the
boundaries of Py, P, and Py are then given by 2o,(9) = o( ?i\'a). 8), i=3,2, and o (6) =
(1,0, 8), i=4,1.

Thus far, we have only described y on the (‘*metastable’’) portion P1 + P2 + P3 of the

(Y, 8)-plane. It is not uecessary, for the purposes of the present section, to specify an explicit
form for y on the remaining (‘‘unstable’’) portion of this plane; any function y which is once

continuously differentiable, is such that \;rY is negative on the unshaded portion of Figure 1, and

conforms with (3.3) would be acceptabie. An infinite number of such functions exist, provided

only that the material parameters satisfy certain inequalities; this is discussed in the appendix.

Next, it is useful to map the regions Pi’ i=1,2,3, of the (¥, 8)-plane asscciated with the

respective phases A, M* and M™ onto the (0, o)-plaze using o= o(Y, 6). The result of this
mapping is displayed in Figure 3 where P; is the image of Pi‘ Given the stress © and temperature

0 at a particle, Figure 3 shows a!l of the phases that are available to that particle.

Finally we address the issue of the stability of the phaéa. The potential energy function
G(¥1; 6, 0) = py(Y, 0) - 60 of the material at hand can be calculated using (3.10). At each (8, ©),

G has one or more local minima. Where G has multiple energy-wells, one can use the explicit
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formula for G to detsrmine the particular minimum that is smallest. This determines the phase
that is stable. The result of this calculation is displayed in Figure 4. The stress-level o O

indicated ip the figure is given by

o (8) = ﬂ.;'r; (%‘r- -1 ) (3.13)

and is known as the Maxwell stress for the A-M* transition. The Maxwell stress for the A-M”
and M*.M" transitions are -0 o(9) and 0 respectively. The two states A and M? that are both

associated with any particular point on thc‘ bonndary 6 = © 0(9) both have the same value of
potcntia’lvcncrgy G and both arc stable; if these states co-exist and are separated by a phase
boundary, the driving force on that interface would be zero and the phases would be in phase

equilibrium.

Suppose momentarily that a particle always chooses the phase that is stable from among
all phases available to it. Then the response of a particle as the stress or temperature is slowly
varied is fully determined by Figure 4. For example, consider a fixed temperature 0 greater than
the transformation temperature OT As the stress o is increased monotonically from a
sufficiently negative value, the particle is in the martensite variant M" until the stress reaches the

value -0 o(0); it then transforms to austenite and remains in this phase as the stress increases over
the intermediate range -00(0) <0< 00(6); at o = 00(8) the particle transforms to M* and

remains there foro> o o(6).

\

\ The immediately preceding discussion assumed that a particle is always in the stable
pinsc. In solids however, particles can often remain for long times in states that are merely
metastable and the transition from a metastable phase to a stable phase is controlled by additional

considerations, viz. nucleation and kinetics. We now turn to these issues.




4. Nucleation and kinetics. Given the stress ¢ and température O at a particle, Figure 3 shows
the various phases that that particle can adopt, while Figure 4 indicates which among them is the
stable phase. If a particle happens to be in a phase that is not its stable phase, the questions of
whether, and how fast, it will transform into the stable phase are answered by a nucleation
criterion and a kinetic law. In this section we will describe simple modéls for nucleation and

kinetics under the assumption that the phase transitions are "thermally activated”.

A particle can change its phase in one of two ways: a particle whose phase is the same as
that of its neighboring particles could change its phase spontahcously through “nucfcation” if
the stress and temperature at‘ that pérticle satisfy an appropriate nucleation criterion.
Alternatively, a particle in one phase adjacent to a particle in a different phase and separated
from it by a phase boundary, will change phase through ‘‘growth’ if the phase boundary
propagates towards it, the motion of the phase boundary beiag controlled by a kinetic law.

Energy barriers: Figure 5 shows two schematic gi#phs of the potential energy function
G(Y; 6, o) plotted versus ¥ for fixed (0, o). Figure 5(a) shows three local minima and
corresponds to a pair (8, ©) at which all three phases co-exist (i.e. the point (0, o) lies in the
region common to P'l, P'z and P; in Figure 3); Figure 5(b) corresponds to a pair (0, o) at which
only the two martensite variants co-exist. Figures 5(a) and 5(b) of the potential energy function
correspond to the respective Figures 2(a) and 2{b) of the stress-strain 'curve‘. The six quantities

bij(a' o) indicated in Figure 5 are the energy barriers to a transformation from phase- i to

phase-j, where it is convenient to use the subscripts 1, 2 and 3 to refer to the phases A, M* and

M’ respectively. In order to calculate these energy barriers, we need expressions for the valuesof

G at the local maxima, and this in turn requires a knowledge of the Helmholtz free energy
function y on the unshaded regions of Figure 1. While we can suitably continue (3.10) into this
‘‘unstable region’’ in many different ways, our present purpose is merely to construct a simple
continuum model that describes the various features of the theory. Consequently, we will simply
extend the parabolas which describe G near its local minima in Figure S until they intersect, and
use the values of G at these intersection points as estimates for the valuzs of G at the local
maxima, Using (3.10) to éalculatc G(Y; 6, 0) = py(Y, 0) - oY and then carrying out this

calculation leads to the following expressions for the six energy-barriers:
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by3® 0 =@w™ [o+o ©@+pyy2 P,

b3y ®.0)= W™ [0+0,® -2 12

b@ 0 =Cwl [0-0®-p2 B

by )= [0-0,® +prp2 1 @1
1,300 =2’ [0+ prp I

by, @00 =@ [0 prp 1

where each bij(e, o) is defined for values of (8, 6) at which the ith and jtk phases co-exist, i.e.
the point (8, 0) lies in the region common to P; and P; in Figwe 3; 0 (0) is the
austenite-martensite Maxwell stress introduced previously in (3.13).

Nucleation: Considefing first the question of nucication. we suppose that a particle

which is in phase-i will transform to phase-j by gucleation if the rclg:vant energy barrier bij(e' o)

| is lwg than some critical number D the associated nucleation criterion is thus given by settipg
bij(e, o) = nij in (4.1). In view of the symmetry of the potential energy function G when © = 0,

we shall assume that both the A>M¥ and A=M" transitions nucleate at the same value of

tcmpératurc if the stress vanishes; a similar assumption for the reverse Mt>A and M5A

transitions will also be made, The former value of nucleation temperature is denoted by Ms (for
‘“‘martensite start’’) while the latter is denoted by As (for ““austenite start’’). Finally, we will also

assume that at any given temperature 6, the nucleation stress-level for the MY >M" transition is
" the megative of the nucleation stress-level for the reverse M ->M" transition at that same

temperature. One can readily enforce these restrictions on the nij’s; when combined with (4.1),

this leads to the following nucleation criteria for the various transitions:

o +0,(6) so M) for A-M,
o+ oo(e) 2 oo(As) for M A,
c- 00(9) z- oo(Ms) fo; A-»M". ‘
6-0,0) s-0 (A) for Mtsa, (42)




623 for M"->M",
os-3 for MT M,

where o 0(6) is the austenite-martensite Maxwell stress given by (3.13) and the constants Ms’ As

and Z are characteristic of the material; necessarily, M < BT < A s and > 0.

Figure 6 illustrates these nucleation criteria on the (B, o)-plane. If the inequalities in (4.2)
hold with eqdality. the resulting equations describe a set of straight-lines in the (, 0)-plane; the
nucleation criterion states that, as indicated in the figure, crossing one of these lines nucleates an
associated transition. Figure 6, as shown, corresponds to a material for which the critical
nucleation stress-level given by (4.2) for the M »A transition exceeds the corresponding

stress-level for the A-»M? transition for some range of temperature, i.e.

> 12 QA8 (A -M; o @3

this need not necessarily be the case.

If the current state of the bar were to involve either a temperature or stress gradient, one
could determine the location in the bar at which nucleation occurs.. In this paper we will
consider a uniform bar that is always subjected to uniform stress and temperature fields; the
location of the nucleation site in this bar is therefore rather arbitrary. If the bar had been rendered

inhomogeneous by a slight uniform taper with the small end at x=0 and the large end at x=L,

then the transition from a low-strain phase to a high-strain phase would necessarily commence at =

x=0 and the reverse transition would occur at x=L. We shall arbitrarily assume that this is the

case in our uniform bar as well.

Kinetics: Let x = s(t) denote the location at time t of a phase boundary in a bar, and let
¥, 0, 0) and (?, 0, o) denote the strain, temperature and stress at the two particles adjacent to the
phase boundary on its left and right, respectively. Suppose that the particle on the left is in

phase-i while the particle on the right is in phase-j (recall that i=1, 2, 3 corresponds to phases A,
Mt M respectively). The driving force f = G(‘;, 0, 0) - G(¥, 0, 6) on an i/j phase boundary can




be calculated from (4.1):

f=¥(0-0()) fora M*/A interface,
f=- ‘YT( c-0 0(9) ) for axnt‘sll\i+ interface,

f=Y¥(c+0_(8)) foran AM interface, @4

=-Y¥(0+0 0(0) ) fora M'/A‘ interface,
=207 fora M*/M" interface,
f=- ZOYT for 'a M MY interface.
As the phase boundary propagates through the bar, the particle immediately in front of it

"jumps" from ore local minimum of G to another, and an explicit model of the kinetic relation

may be constructed by viewing this jumping process on an atomic scale. In order to jump from

- one minimum of G to the other, an atom must acquire an energy ai least as great as that

represented by the relevant energy barrier: for an atom undergoing a phase-i—» phase-j transition
this barrier is bj;(c. 6); for the reverse phase-j->phase-i transition it is b;;(0, ©). Under suitable
assumptions about the statistics of this process, the probability that the energy of an atom is at
least as great as B is exp(-B/KB) where K is Boltzmann’s constant. The average rate at which
atoms jump from one minimum to the other is taken to be proportional to the probability of
exceeding the corresponding energy barrier; we assume for simplicity that the proportionality
factar is the same for the phase-i-»phase-j and phase-j-»phase-i transitions. The velocity s of the
phase boundary, being the macroscopic measure of the net rate at which atoms change from
phase-i to phase-j, is then taken to be the difference in the average rates associated with the i-]

and the j-i transitions:
b.(c, 6) b.(G, ) ~
s = R.. it | MGt B S ) M _
8 RIJ{ cxp( Kb ) exp( ) ) } @“.5

where r denotes the number of atoms per unit reference volume and Rij is a positive

proportionality factor, related in part to the frequency with which atoms attempt to crossover to

the new phase.
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Substituting (4.1) into (4.5) now leads to an explicit rg:prm'cntation for the kinetic

relations of the various transitions in the form s = vij(o, 0). By using (4.4), they can be expressed

in the alternative form s = Vij(f. 0):

. £ + ngh ) @
PEANTPY ke | T | 2ke [ S

where g = Yo for both M*t/A and A/M" interfaces, and g = 2y for an M*/M" interface. These
kinetic relations automatically satisfy the condition fV ij(f,f)) 2 0, so that any moticn consistent
with them will conform with the entropy inequality (2.5). Moreover, at each fixed 0, Vij(f,ﬂ)

increases monotonically with f, so that the greater the driving force, the faster the speed of
propagation. If the driving force f is small, so that quasi-static processes take place close to phase
equilibrium, one can approximate (4.6) to obtain the following kinetic relation which is linear in

f:
2

R.. ug
« - —1 - —
] — exp{ KO } f. “«.7n

5. Thermo-mechanical response of the model. In this section we will utilize the constitutive
model constructed in Sections 3 and 4 to determine the uniaxial response of a bar when it is
subjected to various thermo-mechanical loadings. We describe the analysis associated with one
of these loadings in some detail; the analysis corresponding to the remaining cases is

conceptually similar,

Consider the isothermal mechanical loading of a uniform bar at a temperature 0 > As.

The bar is initially unstressed and is composed of austenite. As the stress o(t) is mononotonically

increased, the bar remains in this phase for some time 0 < t < Y. By (3.11), the elongation d of

the bar during this stage of loading (measured from the refzrence state) is given by

/L = o/p +a@-67) for O<t<t,. 1)

«17-
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From Figure 6 and the paragraph below (4.3) we conclude that M martensite is nucleated at the
left end of the bar at the instant t = t where Y is given by

o(t;,) = 6, (8) - 6 (M). - : (5.2)

During the next stage t; <t < t,, the bar is composed of m*t martéq.éite on the interval 0 < x <

s(t) and austenite on s(t) < x < L. By (3.11),

o = sy [ ot/ + Yp+a@®-0] + [L-s)] [o/p+a@-87)] fort<t<t,,
5.3)

where the phase boundary location s(t) is found by integrating the apbropriate kinetic relation in

- (4.6),(4.9), i.c.

£ + uzy‘.},m} . { )
sinh

— } s(t)) =0, G4
2 TKO 2rK0

st) = Zchp{-

with the driving force £(t) = [o(t) - o 0(6)] - At the instant t = L, the phase boundary reaches
the right end of the bar, s(t2)=L. Fort 2 Y the bar consists entirely of M*martensite and its

response, according to (3.11), is given by

OL = o/t T +a®-Bp) fort>t. (<D

A similar analysis can be used to describe the response corresponding to subsequent unloading,
as well as to loading by compressive stress in which case the M~ variant is involved instead of

M+

In order to study the quantitative, as well as qualitative, suitability of our model, v?c
chose values for the material parameters that are of the correct order of magnitude for a

Cu-Al-Ni shape-memory alloyi
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o ' p=3x10"Nm%  p=8000kym>, .
a=16x105°K,  c=4001xg K,
Yp=005, Ap=57x10° kg,

0,=307°K, A =308°K,  M,=306"K, O (56)

$=2.5x10 N/m?,
K =1.381x1023 Jy %k,
| | Rij = 0.0448 m/s,
r = 9.046 x 1028

The values of the transformation and nucleation temperatures OT, As and Ms were taken from

atoms/m3.

. Otsuka et al. [281 and correspond to an éllo‘y whose composition is Cu-14.0 Al-4.2 Ni (wt%). By
comparison, the remaining material parameters are less sensitive to the alloy composition and the
véluw chosen for them do not correspond to an alloy of this precise composition. The modulus
i the transformation strain Y’i‘ and the latent heat Lr at the u'ansformativoh temperature wercv
estimated using data in Otsuka and Wayman [29]. The values of the mass density p, coefficient
of thermal expansion a, and rpecific heat ¢ were estimated using information in [24]. The value

of the M+/M' nucleation stress = was obtained from Sakamoto etal. [32]. The value of R12 was
‘ estimated by using our kinetic relation (4.6) in conjunction with the austenite/martensite interface
LT velocities measured by Grujicic et al. [17] and reported in their Figure 5; the remaining Rij’s
were arbitrarily assumed to have this same value. The number of atoms per unit reference
volume, 1, was calculated by using the mass density, alloy composition and the atomic masses of

Cu, Al and Ni.

Thaere are four other material parameters, viz. m, M, Bm and BM. that are involved in the

description of our model. Even though they do not affect the response of the material, the
validity of the model requires that such numbers exist in a manner that is consistent with the
ké various constitutive inequalities given in the appendix. One can show that there is a range of

acceptable values for these parameters.

Results: (i). Figure 7 shows two force-clongation curves corresponding to isothermal
mechanical load cycling by the application of a prescribed stress. Figure 7(a) corresponds to a
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temperature below M, with the bar transforming between the M and M'," variants without
involving austenite. Figure 7(b) corresponds to a temperature greater than A s 3 the stress
increases from a sufficiently negative value, the bar transforms from M" to A ahd then from A to
M¥. The loading and unloading 1"atc underlying both of these figures is lo(t)l = 5 x 104 N/mzscc.
The response depicted in these figures is simﬂar to that observed by Nakanishi [27] for Au-Cd;
see Figures 10, 13 in [27]. ~

(ii). Figure 8 shows two elongation-temperature curves which result from cycling the
temperature with the stress held fixed; Figures 8(a) and (b) corrwponc_l respectively to tensile and
compressive values of the applied str&s. The bar transforms between the phésw A and M7 in the
former case, between the phases A and M" in the latter. Observe that the transformation from the
high temperature phase (austenite) to the low temperature phase involves an elongation in Figure
8(a) and a contraction in Figure 8(b). The heating and cooling rate underlying both of these

figures is Ib(t)l = 0.001%K/sec. The response depicted in tkese figures is similar to the response
described by Krishnan et al. [23], Figure 13 for Cu-Zn at a constant tensile stress and that
observed by Burkart and Read [10], Figufc 6 for In-T! under compressive stress.

If the initially austenitic bar Temains stress-free as it iS cooled from a high temperature,
the phases M* and M are both nucleated simultaneously at 8 = Ms' the former at the left end of

the bar, the latter at the right end; they then grow at the same rate according to their kinetic
relations, and once the transformation is complete, the bar consists of an equal mixture of mt

and M", Since the transformation strains involved in the A->M" and A-M" transformations

have been taken to be T and Y1 respectively, the length of the bar does not change due to

transformation. The elongation-temperature response in this case is therefore a straight line. This

is a ftrivial, one-dimensionai manifestation of what is sometimes referred to as “‘self

accomodation’’,

(iii). Figure 9 displays the result of a calculation which attempts to model the “‘shape
memory cffect”’. We begin with a martensitic bar which is comrosed of M* for0 <x < L/2 and
M for L/2 < x < L and whose initial temperature is less than Ms. The bar is first subjected to a




L

program of isothermal mechanical loading during which time the stress is first increased and then

decreased back to zero. At the end of this stage of loading, the bar is composed of Mt only (as
can be deduced from Figure 6), the stress has returned to the value zero, and the bar has suifered
a permanent elongation, During the next stage, the bar remains unstressed while it is first heated

to a temperature greater than As (which, according to Figure 6, transforms it to phase A) and is

then cooled back to its original temperature (which, by Figure 6, leads to a conﬁguration
involving equal amounts of Mt and M"); at the end of this thermal loading, the state of the bar is
identical to its original state. In the calculations underlying Figure 9 we took the mechanical

loading and unloading rate to be lo(t)l = 8 x 105 N/mzsec and the heating and cooling rate to be

Ib(t)l = 0.08%K/sec. Schematic figures similar to Figure 9 may be found, for example, in
Krishnan et al. [23].

(iv). Next we simulate the experiment carried out by Ehrenstein as described by
Achenbach and Muller[7]. Consider a martensitic bar which is initially at zero stress and at a

temperature < Ms; the segment 0 < x < L/2 of the bar consists of M~ while L/2 < x < L consists
of M*. We consider a time interval 0 s t < tF and apply" a stress o(t) = el(l - cos 2xt/80) while
simultaneously varying the temperature according to 6(t) = 6(0) + 82( 1- cos ZmltF). We take 0
<g < /2 and o(tF/Z) <0 0(G)(tl_.{z» -C 0(As) which ensures that the hottest temperature B(tl_ﬂ)
is large enough to nucleate austenite. The resulting elongation history is shown in Figure 10(a)

and may be compared with Figure 2 in Achenbach and Muller [7]; the loading parameters
underlying our figure are g = 5x 105 N/mz. g, = 4°K, 6(0) = 304°K and tg= 4000 secs.

The calculations show that the macroscopic response of the bar plotted in Figure 10(a) is
associated with the local transitions shown in Figure 10(b): during an initial stage, roughly 0 < t
< 978 sec, the bar consists of only phases M~ and M+; the driving force on thg M MY interface
is negative (by (4.4)) and this causes the interface to move leftward in accordance with the
appropriate kinétic law (4.6); thus during this stage the amount of M * increases at the expense of
M’. For ihe heating rate used in our calculation, this leftward moving interface has not yet
reached the end x = 0 of the bar when t = 978 sec; at roughly this instant, the nucleation criterion
for the M > A transition is satisfied and phase A is nucleated at the left end of the bar. As t
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continues to increase, the newly emerged A/M interface propagates to the right (since its driving

force is positive) in accordance with its kinetic law, while the M'/M+ interface continues to
- move ieftward; the amount of phase M~ thus continues to decrease while the émounts of phases
Aand M* increase. A short while later (t = 1026 sec) the nucleation criterion for the MY > A
transition is satisfied and phase A is nucleatcd. at the right end of the bar. There are three
interfaces in the bar at this time, viz. a rightward moving A/M" interface and two leftward
moving interfaces, one M7/M?' and the other M /A At t = 1136 sec the first two of these
‘interfaces meet so that during the next stage, the bar transforms from M*s A as the AMY
interface advances towards the M+/A interface. Eventually these two phase boundaries meet at t
=~ 1314 sec and the entire bar consists of phas: A. During the next stage 1314 < t < 3304, the bar
continues to remain in phase A. The Tempcraturc which was increasing for 0 < t < 2000 begins to
decrease at t = 2000 sec; att= 3304 sec the bar is sufficiently cool for phase M* to nucleate and

begm to grow, until eventually at tm 3834 sec the entire bar consists of M*.

The qualitative features of { the élongation history shown in Figure 10(a) can be
understood from the preceding disc!ussion ‘Figure 10(b)) by keeping in mind that M~ is the
low-strain phase, A is the intermedia:tc-strain phnase and M? is the high-strain phase. During the
" initial stages 0 <t < 978 and 978 < ti< 1026, when M’ is disappearing, first due to the growth of
M? and then due to the growth of both M* and A, the bar gets longer. During the stage 1136 < t
< 1314 the bar is transforming from M+ to A and so the bar gets shorter. Next, for 1314 < t <
3304, the bar remair; in phase A and so its length does not chaﬁge appreciably. Finally, for 3304
<t < 3834, the bar transforms from A to M and so it gets longer again.

). ‘Finally we simulate two recent experiments carried out by Milller and Xu [26] on a
Cu-Zn-Al shape memory alloy. Consider a bar of austenite at an initial temperature > A " In the
first simulation, the bar is subjected to an isothermal mechanical loading during which the
clongation is increased monotonically until M* martensite has nucleated and begun to grow;
then, before the bar has transformcd completely to martensite, it is unloaded by decreasing the
clongation back to zero. The experiment is now repeated, with unioading commencing at

different instants. Figure 11(a) shows the result of this simulation (carried out at © = 330°K and

151=8.333x 1(')'6 m/sec) and may be compared with the experimental results reported in Figure

22.
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13(b) of Muller and Xu [26).

In the second simulation, the bar is subjected to an isothermal mechanical loading during
which the elongation is increased until the bar has transformed completely into M* martensite.
Next, the elongation is decreased monotonically until austenite has been nucleated and begun to
grow; then, before the bar has transformed completely back to austenite, it is reloaded by
increasing the elongation. The experiment is now repeated, with reloading commencing at

different instances. Figure 11(b) shows the result of this simulation which was also carried out at

0 =330%K and 151 = 8.333 x 10 m/sec ; cf. the experithental results reported in Figu;e 14(b) of

Mduller of Xu [26].
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Appehdix: R&strictibnﬁ on the material parameters. _
Here we shall list all of the inequalities not displayed previously whick the material

parameters must satisfy. According to the statement below (3.12) the equations of the boundaries

of the regions Pi in the (¥,0)-plane are given by

91(9) =- Om(ﬂ)/p. - 17 + a@- BT) ‘for 0 <B< BM,
?2(6) = --GM(G)/u + a® - ) ~ for Om <0<0,,
H@=oy@/n+ a®-6)  for O <B<8y,,
4?4(9) =0, O+ 1p+ a®-6;) for 0<6<6,,

s (A1)

where the stress-levels om(ﬂ) and GM(B) are given by (3.12). In order that the corresponding
straight lines in the Y, 0-plane be arranged as shown in Figure 1, it is necessary that ?4(9) >
120 > 7,0 >7,0)> -1 for8 <0 <8, and that ¥,(8) > ,(8) > -1 for 0<B<O_.
These incqualities can be expressed, upon using (A.1), as .

0< oM(B) < om(e)_+ WYp < B+ pa<e-eT) for Bm <0< OM’ a2

0< om(0)+p.‘y.r < u+pu(6-0.r) for 0<0<0m.

Next, since we assumed ‘in Section 3 that all three phases M", A and M exist when 6 =
0 and @ = O, it is necessary that the corresponding strains ¥ = -y, 0 and Yp lic in the
appropriate strain ranges as defined by Figure 1. In view of (A.1) and (A.2), one finds that this
bolds if and only if :

Tt < 1, om(BT) <0. (A.3)

We turn finally to the issue of extending the Helmholtz free-energy function (3.10) to the
unshaded (*“unstable’’) region of the (¥, 0)-piane shown in Figure 1. Even though we do not need
an expression for y on this region, it is still necessary to know that (3.10) can b= extended to that
rcgibn in the manner previously assumed (see paragraph below (3.12)). The ability 1o do this is

equivalent to the ability to connect each adjacent pair of rising branches of the stress-strain curve
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in Figure 2 by a declining branch with prescribed area under it. Since the stress-strain curve is to
be declining for strains in the intervals (11(9). 72(6)) and (73(0). 74(0)) when 0 <0< OM, and

on (‘{1(6) 74(6)) when 0<0<0 I’ it is necessary that

opq® > o, @) for 6 <B<By, -0 ©)>0 (8 for 0<0<B . - (A4)

Next, as is rcadily scen from Figure 2(a), for 9m< 0< OM. the »aréa under the graph of
O(s, 0) between ¥ = ?3(6) and ¥ = ?4(9). must necessarily lic between the areas of the two
rectangles with the same basc (?3«3). 94®) and with beights o),,(8) and 0 ®). A similar
restriction applies to the area between ¥ = ?1(9) and Y= ?2(9). and for 0 <0 < Bm to the area

between ¥ = ?1(6) and Y= ?4(9). Thus it is necessary that

-op® (9,0 -9®) < pvH,©.0)-pv}®).0) < -c ®)(,®- %®).
0 ® (4@ -2,®) < p v34©.0-pv;®.0) < oy® (3®- ?3«»). (A5)
o ® (14©®-1,0) < pv?,©.6)-p v ®.0) < - o @ (,®-1,©).

where the first two sets of inequalities in (A.S) hold for Om <0< BM. while the last set holds for
0<0< Gm. Conversely, given two points (?3(0). oM(O)) and (?4(0). om(O)) in the (Y, ‘o)-
plane, with ?4(9) > ?3(0),' a sufficient condition for the existence of a continuous detreasing
function (s, B) connecting these two points, which is such that the area under it is p \y('?4(6). 0
-p \v(?s(ﬂ). 0), is that (A. 4, and (A.5), hold. The requirements (A. 4)\ (A.5) are therefore
necessary and sufficient for the extendability of the Helmholtz frec-cncrgy unctxon (3.10) to the

unstable region.

The inequalities (A.5) can be expressed equivalently in terms of the stresses om(O).

OMm) and o o(6) as




/\

[0p4® - 6 @ < 2uylo (6 - op®] for 6 < 6 < By,
[0)4® - 0 OF < 2 [0 ®) -0 @)] for B_ < 8 < By, (A.6)
- Wiy < cm(e) <0 : for 0 <08 < Bm.

The inequalities (A.2) - (A.4) and (A.6) must be enforced on the material model. They
can be reduced by usicg (3.12), (3.13) into temperature independent inequalities that involve
only the material parémcters. We shall not display the resulting inequalites here. These
inequalities, as well as (4.3), are to be imposed on the material constants entering into our model.
One can verifiy that the particular values (5.6) of the material constants, together with a range of

values of the four remaining parameters m, M, Om and OM, do satisfy these inequalties. For

cxaimplc, one possible set of values of the latter four parameters are m = 9.7253 x 10-5 LK,
M = 10.1371x10 K, 6, = 285°, Oy = 10,000°; as mentioned previously, the particular

values of these four material constants does not affect the response of the material.
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